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R E L A X A T I O N  O S C I L L A T I O N S  O F  A N O N E Q U I L I B R I U M  G A S  

F I L L I N G  A V A R I A B L E - A R E A  C H A N N E L  

A. N. Bogdanov UDC 533.6.01 

Relaxation oscillations of a perfect gas (periodic variations of the parameters of the medium, slow, very fast, nearly 

discontinuous) in a variable-area channel were considered in [1]. Such oscillations arise when the frequency of external 

perturbations (that are incident on the open end of a channel or are caused by a piston oscillating at the end of the channel) 

is close to that of possible natural oscillations of the gas in the channel. A distinctive feature of these oscillations is that 

periodic shock waves appear. In the literature this phenomenon is also called nonlinear near-resonance oscillations [2-7]. 

The study below includes the case of a nonequilibrium (relaxing) medium. The process of establishing 

thermodynamic equilibrium in a gas is also called relaxation, but it does not have the distinctive features of relaxation 

oscillations (portions of a rapid abrupt change) since it is smooth. The chosen nonequilibrium process in a gas was the 

establishment of thermodynamic equilibrium between translational and vibrational degrees of freedom of the gas molecules 

(vibrational relaxation). This study, therefore, considers relaxation oscillations of a gas undergoing vibrational relaxation. It 

is my hope that a tangle of complex-sounding terms will not arise and the notation crisis that this would entail could be 

overcome. 
I. The unsteady, one-dimensional flow of a viscous, heat-conducting gas admitting excitation of vibrational degrees 

of freedom of the molecules is described by the system of equations 

au t dS du ap ( 4,11 a'u ae + u h ? - + p - - = - p u  + = ~ + 
at ax Ix "S~x' P"~" -~X [ T ) ' ~ '  (1.1) 

dh dp + ~ + a~. u + _ _ 

P dt  -- a t  3 1 0 x [  X aX l , d t  r (e~ ek). 

Here p is the pressure; p is the density; u is the velocity; e k is the energy of the vibrational degrees of freedom of the 

molecules; T is the translational temperature; h = (7/7 - 1)/(p/p) + e k is the total gas enthalpy; z is the vibrational 

relaxation time; S is the channel cross section; • is the thermal conductivity; r/ and ~" are the viscosity coefficients (~" is the 

second viscosity); x is the spatial coordinate; and t is time. The equilibrium values of the vibrational energy et* and r can be 

expressed by the formula [8] 

e~ = O, Rl (exp(O, / r )  - 1 ) ,  ~- = e x p ( k , r - v ' ) ,  t - - -  , 
- , ~ l p  

where O k is the characteristic vibrational temperature; R is the gas constant; and k i are positive constants that characterize the 

physical properties of the gas. Specific values are given in [8], 

In classical gas dynamics the viscosity and thermal conduction processes are disregarded because x, 77, ~" are small 

under ordinary conditions. Since the study carried out here includes shock waves in which viscous friction and thermal 

conduction are important, viscous terms are written into the system (1.1). Shock waves are introduced below not as jumps 

but as very rapid continuous changes in the gas-state parameters. 

We consider a steady subsonic flow of a relaxing gas along a channel; the flow can be considered to be not viscous 

or heat-conducting. Suppose that this flow is perturbed by weak periodic waves, which enter the channel inlet or are excited 

by a piston oscillating at the end of the channel. We assume that the amplitude of these perturbations is characterized by the 

small quantity t5(~5 < <  1). Under this action oscillations of small amplitude t51, depending on tS(t51 = ~sN), arise in the 

channel. The perturbed values of the flow parameters can be sought as a series in 51, e.g., 
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u ---- U ~ + U 1 + u 2 + . . .  

(the superscript 0 labels parameters of the unperturbed flow, u I is a quantity of the order of  61,  U2 is of  the order of 612, etc.) 
We reduce the system (1.1) to the form 

Here s is the entropy; 

. 1 O2u 
d• 1 d• 1 d S  -T" Y -  1 (ek _ ek) + e - - ~  § 

a t  u .a_ - - ~  p = ~ " " 7  a-S " p a ~  - pa aT 

pa La~,t o,,) 

T-~t s = - T ( e ,  - ek) + :;L t + >< . ~ t  e, = T(e,  - e,). 

0 4 • d ,  0 + ( u +  a) 0 do a + u - - ;  e = ~  + - -  " ~ = - .  

dt  - 3t --  a x '  dt - at ax 3 7 '  e 

(1.2) 

The quantitizs u + ~ dp/pa are called Riemann invariants. As r ---, ~ (ordinary gas dynamics) instead of examining 

how the perturbations of the parameters of the gas flow in the channel behave, we can study the behavior of the perturbations 

of the Riemann invariants. In a nonequilibrium medium the Riemann invariants, J 1 and J2 describing the flow of an ordinary 

(perfect) gas are supplemented with quantities characterizing nonequilibrium processes in the gas: change in entropy and 

vibrational relaxation. Correspondingly, an entropy wave and a relaxation wave are added to acoustic perturbations. 

Perturbations of this type are transported by gas particles and they propagate along streamlines. 

We introduce the notation 

j_-,,+f~-u o _  (f~/~ pa pa# 

The boundary conditions can be formulated as 

~ . , o ,  

x = O, J2 = KJ'I + ~ sin(rot), 

x = L,  1 ,  = N J  l 

(1.3) 

(L is the channel length). Indeed, when the channel has an open end the usual boundary condition has the form p = p0 

(constant static pressure) or in Riemann invariants J2 - J1 = 0, in which case N = K = 1. The propagation of  entropy and 

relaxation waves in the channel has no effect on the pressure and velocity perturbations, whereby if conditions for the 

pressure or velocity are set at the channel ends the reflection coefficients do not change from the values calculated for an 

ordinary (perfect) gas. In this case we can assume that there are not entropy-relaxation waves at all. As an example of the 

boundary conditions when an entropy wave is generated by acoustic waves we point out the existence of  a shock wave at the 

channel inlet. The reflection coefficients for this case were calculated in [9]. 

The problem of correctly formulating the boundary conditions for the open end of a channel has been discussed in the 

literature (see, e.g., [10]). It has been ascertained that constant static pressure can be chosen as the boundary condition for 

low frequencies of  gas oscillations and low velocities of the drifting flow. If  the velocity of  the drifting flow is high, then the 

condition of  a constant total pressure p + 1/2pu 2 is a more accurate boundary condition. At high oscillation frequencies so- 

called corrections for the open end must be introduced. The reflection coefficients in this case are extremely cumbersome and 

a computer is needed to calculate them. Graphs and appropriate formulas are given in [10]. 

Writing the parameters of perturbed flow in the channel as an expansion in 51, from the system (1.2) in the first 

approximation in (51 we obtain 

- -  ~ - -  I d~: 1 dS ( u ~ - a l  dP~ - (u - § a)l du~ 
d tUl  • d t P i  = ~ ( u a ) l S d x  ~ t pa J i d x  

,-,rfa, . ] 
--" a ~  i t = '  + - 

- -  _'Nltek ek) ~  (e~l - eki) 

(1.4) 
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do (~- I ds~ | ( e 2 - - P k )  0 I ~'21 -- P~I d o | ( e  2 - - P k )  0 

d--=~ s ,  = - T l + u , ) ~ x  + ~ '  rO 2 T o r ~ ' Z e . ,  = - ~-~ u ,  rO - r ,  - -  

where { ~ :' 
Ok Tl[ ek [ :}(/9I k2 7"11 

For terms of the second order of smallness in c51 from (1.2) we have 

+ 

d• l d• 1 dS ~ u • a dp~ (U + 
d"'~ u2 - p~ d-"~ p2 = ~(ua)2s  d"-x ~ pa )2d"-x - - a)2"~x 

§  [ (a  2 r l / . .  ] _ u ~ +- a ~ do ~ 
,,o,.o L(=O + - - . ,  (pOaO)~. dxPla, - ~ ) ( e ,  ek) ~ (e~2 - e~2 ) + 

+ cTt u, ' ' - 7 - L z t  z )  + , ,o 

-- ,axU, T- uta, 7 -~xT "  "-~P, + ( u + - - a ) , ~ x P  
1 

T- pOaO(U ~ a ) l ~ x p  1 • aOr ~ (e k _ ek)l + 

T ~ alz,(e" - e,) ~ • ~ (~, - I )  + ~ --~--], 

~~ ("~176  '( (~: -')~ / ~ 
dtS= = - ~ ' T ,  + u, ~ + ~ r ,  ? e~' 2 + e t 2 - U, oxS,  

(rOTO) , r , r , + ~ ( e 2 -  e.), + ? + ~  l Ox) + ~ , 

dx I dx l  + "-'~-x2J , ~te.2 rO /.o " - +  ~-5 r` + r----'d----- 

(e: - ~)o 

[0 2 

e21 - % 
T 1 rO 2 

+ ~  
r o 

(1.5) 

We introduce the notation Jhn = Um + Pm/(Pa) ~ J2m =Um 
rewrite the systems (1.2) and (1.2) as 

-Pm/(Oa)0, J3m = Sm, J4m = ekm, m = 1, 2. We 

d dx 
_ U 0 q= (2 0)  

--dtt I n  a u l n  + a12121 + al(141' dt 

d dx 
~ ~ LL 0 - -  12 0 ,  dt J'21 a21Jn + a~121 + a241(i, dt 

d dx 
-~t J3t = a31Jn + a3zl21 + a~J41, tit - u~ 

d dx 
-~t 141 = a41Jn + a(2J21 + auY41, dt -- u~ 

(1.6) 

d dx d dx uO + aO ' _ u ~ 
~t Jt~ = anJu  + at2Jz2 + a14J,2 + alo, dt -- ~tt J22 = a2r + az2Jz2 + a2J42 + a2o, dt - a~ 

d 
~/13, = m,: , ,  + m / , ,  + a,,1,, dx d dx uO + %' u = "~ ~ J,2 -- " , / , ,  + " , / , ,  + ".J , .  + -,~, ~ -- 

(1.7) 

(the coefficients aij can be calculated by using the systems (1.4) and (t.5). 
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TABLE1  

Gas Pr )' 

Argon, helium 
Neon 
Air 
Hydrogen 

0,9 
1,3 
1.4 
20 

1,666 
1.666 

1,4 
1,4 

- a t ~ ~  *" 

Fig. 1 

-o-; n 

Fig. 2 

The parameters of  unperturbed steady flow in the channel are determined from the system of ordinary differential 

equations following from (1.1) when the dependence on time, viscous friction, and heat conduction are ignored: 

_• duo o 1 d S  o o duo alP~ uO__ + p O _ _  = _ _  - -  = 0, (1.8) 
dx --P u~ ~ dx " p u dx + dx 

pOuO dh~ u 0 dP~ o d o * Y o 
-~x = d-'-x' u d x  e-k = (ek --  e k ) ~ 1 7 6  h~ - y -  I pO/pO + ek" 

In the case of low-frequency oscillations the resulting equations can be solved by using the effective method of 

geometrical acoustics (or optics) [11] and looking for the solution as a series in inverse powers of co (o~ > >  1 is the 

approximation of geometrical acoustics), 

~ J,,,t-,) 
�9 f,,. = exp(~(%(x)  - t)) 

.-o (/")" 

When this approximation is used to solve the equations of  the systems (1.6) and (1.7) the interplay of  the Riemann 

invariants in these equations for each term of the expansion is a quantity that takes into account terms of higher order of 

smallness in 1/o~. Physically, this means that the time of interaction of waves propagating along the characteristics of various 

families is very short and in this sense this approximation is analogous to the "short wave" approximation [12]. 

The equations of the system (1.6) are solved in much the same way as in ordinary gas dynamics [1] (entropy 

perturbation waves and relaxation waves are not taken into account in view of the comment about the boundary conditions, 

see (1.3)). At the ends of the channel we have 

J , t ( t ,  0) = C,(cot), l t l ( t ,  L )  = C,(co(t  - a~(L)))exp ,o +_ a--"'--~ d,~ + 

(1.9) 

-- A,m(0)F (co(t - crj(L)))lexp a ,  d ~  /,t o ~ a 0 

a t "  .uS ~ "  "a 0 u 0 _ a 0 and in addition F '  m = C=, At,. - uO • aO exp l(a~ - a~) -I I', 1 ~ m, %(x) = uO _* a0 

prime denotes differentiation of the function with respect to its arguments and the superscript - 1  denotes the inverse 

function; 
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1,2(t, O) = O, y~(t, L) = Eb,~(L)C;' + b,2(L)C;C ,, b,,.(x) = f o_--~--~aO ex p - f  ~ a o d s  d~exp ~ d s  
o - ~ 0 - ) ~ o " ~  (I.1O) 

(&Ira are coefficients in the expansion at0 = e&llCt" + &t2C/'CI, l, m = 1, 2, the top sign corresponding to l = 1 and the 

bottom sign, to I = 2). 

We substitute the solutions (1.9) and (1.10) into the boundary conditions (1.3) and upon eliminating C 2 we have 

KCl(o~(t - a~(L))) + ~ exp - ~ ~ ~HFl(o~(t  -- ~ ' l (O) )  

+ r -- o ~ ( O ) ) !  + ~exp -- ~ b~KC':(~o(t  - ~, (r.))) 

+ exp - up _ a==='==-'~ d~ b~K2C;(to(t  - o2(L)))CI( to(I  - a2(L)) ) 

= N e x p  - up ~-a""-"-"~d~ { C / ( o . ) ( t -  o ' l ( L ) ) ) e x  p a l l  :/,~I 
U 0 + a 0 " ~ :  

1 
+ ~ K[f l l2Fl(w(t  - a2(L))) + flz2Ft(oJ(t - at(L)))  I + eblzC':(o~(t -- at(L)))  

+ bL~C'l(w(t - e t (L)))e~(oo(t  - at(L))) t  - b sin(w(t - era(L))), 

(! / ilia = At2(L)exp at-"--!~ a t  flu A2l(L)exp d,~ t/0 + a 0 ) ~ ) 

"I  (! " )  fizz = -At~(O)exp[a ~ u o + a o d~ , fl:l = --A:t(O)exp ~ d ~  . 

We introduce the notation 

T = c t l ( L ) - a 2 ( L ) '  rl = r 1 7 6  Nt = N e x p { ! (  all a,, ) ) up + aO uO'~ a6 d ~  . 

As shown in [1], K = 1~ 1 is a necessary condition for resonance. In the case of  near-resonance oscillations K = N 1 - 

where k < < 1. Moreover,  coT = 27rn + A, A < < 1, and we can use the expansion 

Ct(r / + o~T) = C~(,t + 2un + A) = Ct(,7) + AC',(,t). 

k, 

We take Cl(r/) = J(rD and recast the equation obtained from (1.1 I) by transformation in the form 

e'aoJ" + aiJJ" + a2l'  + a3J + a ,F  = 6 sin r/, (1.12) 

where 

a 2 

l! / a22 = ( b l 2 N -  bz2K2)exp - d~ �9 "ao = ( b l l N -  b21K)exp - ~ d $  ; al 

= - K A ;  a 3 = - K  + N~ = k; a,  = exp - ~ ( gN(~ t~  + 3 ~ )  - ~ .  - r 

A qualitative analysis of  Eq. (1.12) with coefficients of general form was made in [1]. 

2. The coefficients of  Eq. (1.12) in explicit form for a flow of  ordinary perfect gas in a constant-area channel (dS/dx 

- 0) with gas flowing in and out freely at the channel ends (K = N = 1) are 

(y Lm 2 - I)M O - I - ~'~(y - I) 2 

~o = z~-~o~ [ 0 - Mo)' - 

--0,+,)(.( l_ , } 
at = - 4a~ M 0 1)2 (M o + l)i , 

(y - l)M o + I + y---~'(• - l) 

(M o + I)3 

a 2 = - - A ,  a 4 = a 3 m 0 .  
(2.1) 
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The parameters of an unperturbed constant flow in the channel are labeled with 0 subscripts. 

The ratio of the viscosity and thermal conductivity is determined by the Prandtl number. In our case the expression 

~ r - I )  l 

yR Pr 

can be considered as the reciprocal Prandtl number, calculated from the longitudinal viscosity e = (4/3)r/ + ~'. The values of 

Pr for various gases are shown in Table 1 [13]. Since the flow in the channel is subsonic everywhere, M 0 < 1, the 

coefficient ~o is positive, and a I is negative. We note that a 1 ---, 0, M 0 ---, 0. 

We assume that A > 0 (in general a change in the sign of  a 2 is immaterial since when a 2 ---, - a  2 the field of integral 

curves of Eq. (1.12) with a 4 = 0 goes over into itself upon the substitution J ~ - J ( - - q ) ) .  We thus have the degenerate case 

ao > 0, al < 0, a2 < 0, a3 = a4 = 0" 
In this case the oscillations established in the channel do not contain shock waves. Indeed, the part of the solution 

that corresponds to the portion of rapid (nearly discontinuous) change can be approximated as a series in the small parameter 

e [14]: 
.t = yo(~ ' )  + e y , ( , f )  + . . .  

07* = r//t). By substituting this expansion into (1.12) in the first approximation in t we obtain 

i r  F 

aoy o + (a ly  o + a2)y o O. (2.2) 

The sign of the product ~oat is determining in ascertaining the direction of the transition in the shocks. Suppose that 

Y01 corresponds to the state before the shock and Y02, after the shock. It turns out that if ~0al < 0 Eq. (2.2) has two 

solutions, corresponding to oscillations for which Ym > YO2 (expansion shocks). Indeed, Eq. (2.2) can be rewritten as 

1 

" = - ~oo a ' 
Y o (atyo + 2 )yo" (2.3) 

The signs of y'~) and % must be the same at the beginning of rapid fast oscillation (shock) and differ at the end. From (2.3) 

we see that the transit ionthrough the line Yo = - a 2 / a l ,  corresponding to the shock, is accompanied by a change of sign of 

the coefficient in front of y~) (but not the sign of Yb itself). Accordingly, the sign of y'~) changes. When ~oal < 0, therefore, 

we can construct a solution containing an expansion shock by choosing y~) < 0, alYol + a 2 > 0, alY02 + a 2 < 0, i.e., 

Y01 > YO2" 
Solutions with expansion shocks are not realized in the problem under consideration. Indeed, the solutions of Eq. 

(1.12) represent the total change (caused by the arriving and reflected perturbation waves) in the Riemann invariant J1 at the 

channel end x = L. If the channel end is open, then an arriving shock wave is reflected from it as an expansion shock. The 

total change in the invariant, however, is a shock wave: although the pressure jump at the channel exit is zero, gas flows out 

of the channel into the external space [15]. 

The oscillations established in the channel, therefore, are described by an equation that follows from (1.12) after the 

substitution ~o = a3 = a4 = 0 (the equality ~o = 0 formally signifies that there are no shocks in the channel): 

(a21 + a2)J' - ~ sin r/. (2.4) 

Equation (2.4) is integrated and makes it possible to obtain 

1 (2.5)  
ar = - - ( _ a 2  4 - q ~ -  2ai( J cost/  + q*)). 

a 1 

(q* is the constant of integration). The field of the integral curves (2.5) is given in Fig. 1. 

If one end of  the channel is closed by a solid wall while at the other end a piston generates weak oscillations, the 

unperturbed state of  the gas in the channel can be assumed to be quiescence and the coefficients of  the reflection of 

perturbations at the channel ends are K = N = - 1 .  Then 
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hoa..~o~3 [ ~y  - I)~_l ho(y + I) 
1 + yR ' a l = - -  2a~o 

a 2 = a ,  a ,  = a 3 = 0 .  ( 2 . 6 )  

In this case ~oal > 0 and solutions corresponding to relaxation oscillations (containing shock waves) established in 

the channel can be constructed [1] (Fig. 2). 

3. Let us consider the case when the channel cross section varies monotonically, causing the parameters of the flow 

in the channel to vary. Taking into account that K = N = 1, we can rewrite the coefficient a 3 as 

a 3 = e x p  %(Mo 2 d x  d x  - 1. 

As indicated above, the necessary condition for the existence of near-resonance oscillations in the channel is that k 

< < 1 and, therefore, a 3 be small. This condition can be satisfied when the exponential term in the expression for a 3 is 

different from unity, which means that the argument of the exponent is a small quantity. This requirement can be satisfied if 

the derivative du/dx is itself a small quantity or changes sign so that the integral in the argument of the exponent is small. 

The solution of the system (1.8) can be sought in the form 

pO = po(l _ ~YP,o), po = Po(l _ ~Pio), u~ = uo(l + ~'u~o), (3.1) 

where ~ is an auxiliary small parameter, e.g.,  for a channel with a monotonically varying cross section 

S(L) 
= I n - - ' - -  . s(o) (3.2) 

2 Then y - 1 M o + 2 
a 3 ---- _ _  a~ (M~- l ) ( u ( L )  - u(0)). 

In an expanding channel u(L) < u(0), and so a 3 > 0. In a narrowing channel u(L) > u(0), and a 3 < 0. 

For a 4 we have the expression 

Since Mo 2 < 

(L) (0) I M~ 
a4 - ~ I -M o~S(L) S(O) dx 2 " 

1, coefficient a 4 is positive if 

l d S  1 d S  

S(L) ,ix (L) > S(0) ax (0). 

(3.3) 

On the other hand, a 4 is negative if 

1 d S  ! d S  ( 3 . 4 )  

SfL) ~ (L) < S(O) ~ (0). 

Examples of  channels that satisfy the conditions (3.3) and (3.4) are given in Fig. 3. 

Next we note that since the reflection coefficients at the channel boundaries are the same as before that the 

oscillations and the oscillations are assumed to be near-resonance (coT = 27rn + A, A < <  1), the coefficient a 2 = - K A  also 

retains the value calculated earlier (see (2.1)). 
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b IL 

Fig. 3 

When expansions of the type (3.1) are used the coefficients a0 and a 1 undergo a change of the order of ~ in 

comparison with the case of constant uniform flow in the channel. Such additions do not change the sign of these coefficients 
and change their magnitude only slightly. These changes can be ignored and (2.1) can be used. 

The effect of the variation of the channel cross section thus is taken into account by a change in the magnitude and 

sign of a 3 and a 4. Slight variation of the channel cross section has little effect on a0 and a 1 (changes their magnitude only 

slightly). 
4. Let us consider the case of free flow of nonequilibrium gas from the channel. Suppose that the channel cross 

section is constant (dS/dx --- 0). Then 

t + t ( r -  I),t: 2 ,2 ] du o 
all = "2 M~ -- M~ ~' 2 + ~ 3 T O V  3 (1 -- M ~ )['-~-'x - E~ 

.I 
1 y + I (Y -- i)k 2 ^2 ] d u  o 

a z 2 = ~  M~ + M ~ 2 + - - 3 . r  or3 (I - M " ) ] ~ -  E ~ 

J 
I 

al2---~ - - i  

l 
all m - -  "~ 

( 2 + ~ ' + 1  ) 
2 M ~ (M ~  1) 

' - 2 + Y + l  ) 
2 M ~ ( M ~  1) 

0' - l)k s (1 M ~ duo 

3..:v.-~- - ~ + ~, 

(~' - t)k s (I - M ~ duo 
3:1/3  ~ + E a. 

(4.1) 

Here 

, eZ/ O, 
E ~ =~r o (~- 1) exp.. 

The expressions obtained are used to calculate a3: 

a 3 -- exp ~ 1 

1 

1 

As noted in Section 1, a necessary condition for near-resonance oscillations is that a 3 be small. This is possible if the 

exponential term in a 3 differs little from unity. The argument of the exponent, therefore, should be small. We consider the 

case when the smallness of the given argument is ensured by the smallness of the reciprocal relaxation time 1/~ ~ < <  1. 

352 



This makes it possible to obtain a simple approximate solution of the system (1.8) by using the expansion for the 

unknown parameters of unperturbed flow of a gas in a channel in a form similar to that of (3.1): 

-- o a~(~ko + 2eklo)- ( 4 . 2 )  pO Po( I - ~"YPlo), po  _.. P o ( l  - ~'Plo)' u~ = uo( l  + ~u lo ) ,  ek ffi 

Here ~ is an auxiliary small parameter (dimensionless reciprocal relaxation time calculated for x = 0): 

1 L 

ro roU o " 

Substituting (4.2) into (4.1) and integrating, we can find 

(4.3) 

43 - 2"-L y-- 1 {/ (Y + I)M~ (Y- I ) k 2 / . _  
M 0 - ,  i - -  .-:rM0 + 3 (,k 

2 

+ (~, - l)y exp . 

The resulting expression shows that in an equilibrium gas (e* k = e k) a 3 < 0. For small M o fairly strong excitation of the 

vibrational degrees of freedom of the gas molecules results in a positive a 3. For large subsonic velocities the situation is the 

reverse and a 3 < 0. 

We go on to calculate a 4. According to (4.1) and (4.2), the coefficients akin are of the order of ~ in the given 

approximation, and so we have 

1 
a 4 = ~ [(au(L) - au(0))( l  - bt0) - ( a 2 1 ( L )  - a21(0))(l + Mo)! 

and a 4 is a quantity of the second order of smallness in ~. In the approximation under consideration we can set a 4 = 0. 

In Section 3 we showed that when expansions of the form (4.2) are used ~0 and a 1 undergo a change of the order of 

in comparison with the case of a constant uniform flow in the channel. Such additions do not change the sign of the given 

coefficients and change ~heir magnitude only slightly. Disregarding these changes, we can use (2.1). 

The effect of nonequilibrium processes (vibrational relaxation) is taken into account by the change in the magnitude 

and sign of a 3. A weak nonequilibrium state has little effect on the other coefficients. 

In addition we consider forced oscillations of gas which is at rest in the channel and admits excitation of the 

vibrational degrees of freedom of the molecules. Suppose that one end of the channel is closed by a solid wall and at the 

other end a piston oscillates with a small amplitude. Here K = N = - I, the unperturbed state of the gas can be considered 

to be an equilibrium state with constant parameters. We have 

a t l  --- a u  = - E  0' at2 = a21 = E o, 

I L Ok 
a3 -- 1 -- M e 2 r ~ Y(r --  1) 2 e x p  TO a 4 ---- 0 .  

The coefficients ~o, at, a2 should be taken from (2.6). 

All of the differences from ordinary gas dynamics in this case are in a 3. The effect of the term with this coefficient 

on the form of the solution of Eq. (1.12) may be decisive. Indeed, when the criterion 

la21 
is satisfied solutions corresponding to discontinuous oscillations do not exist [1]. In ordinary gas dynamics (in the absence of 

relaxation ~" ~ oo) this criterion is not satisfied since a 3 = 0. The relaxation process in the gas as a result of the excitation of 

internal degrees of freedom can cause shock waves in the channel to disappear and smooth oscillations to be established. 
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5. The flow of a nonequilibrium gas in a variable-area channel can be studied by combining the results of Sections 3 

and 4. Formally, the effect of weak variability of the channel area and the weak nonequilibrium, determined by small 
additions (of the order of 3, introduced in accordance with Eqs. (3.2) and (4.3)), can be taken into account by simple addition 
because of their linearity. 

We note that in cases when the product ~oal is negative, a solution corresponding to oscillations with shock waves 

cannot be constructed [1]. In view of this we can conclude that free flows of a vibrationally relaxing gas in the channel are 
safe in regard to the formation of shock waves. 

The formation of shock waves is known to be accelerated in a vibrationally excited gas because of the amplification 

of weak perturbations [12]. These processes (not related to resonances in the channels) are the source that initiates shock 

waves during flows of a nonequilibrium medium. 

It is of interest to look for nonequilibrium media, during whose flow the conditions ~0al > 0, a 3 < 0, since under 
these conditions relaxation oscillations (containing shock waves) arise and do not disappear even after the driving force ceases 

(i.e., are self-oscillations) [1]. 

I thank A. G. Kulikovskii and S. A. Egorushkin for their discussion of the work. 
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